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Parallelism

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps
also across machines/workers (aka “Divide and Conqguer”)

Key parallelism paradigms in data systems
« assuming there will be coordination:

data

func Shared Replicated Partitioned
Data

Replicated N/A (rare cases) sarallelism
Hybrid

Partitioned Task parallelism oarallelism



Terms are confusing

* Different domains term them difterently in different contexts
* Architecture/parallel computing: single-node multi-cores
* SIMD, MIMD, SIMT
* Distributed system: mulfiple-node multi-cores
®* SPMD vs. MPMD
* Machine learning community
* Data parallelism vs. Model parallelism

* Inter-operator parallelism vs. Infra-operator parallelism



Today's topic: Parallelism

® Express data processing in abstraction
* Parallelisms

* Task parallelism

* Data parallelism

® Terms: SIMD, SIMT, SPMD, MPMD



Task Parallelism

Basic Idea: Split up tasks across workers; If there iIs a common
dataset that they read, just make copies of it (aka replication)

Example:

Given 3 4) After T4 & T5 end, run T6 on W1; W2 is
o workers idle

3) After Tl ends, run T4 on W1, after T2
0 ends, run TS5 on W2; after T3 ends, W3 is idle

2) Put T1 onworker 1 (W1), T2 on W2,

@ @ T3 on W3; run all 3 in parallel

\ 1) Copy whole D to all workers
D



Task Parallelism

* Topological sort of tasks in task graph for scheduling

* Nofion of a "worker” can be at processor/core level, not just at
node/server level

* Thread-level parallelism possible instead of process-level
®* £.g., Ray: 4 worker nodes x 4 cores = 16 workers total
* Main pros of task parallelism:
* Simple to understand
* Independence of workers => low software complexity
* Main cons of task parallelism:
* Can be difficult to Implement
* |[dle fimes possible on workers




Degree of Parallelism

 The largest amount of concurrency possible in the task
graph, I.e., how many task can be run simultaneously

Example: Q: How do we quantify the runtime
Given 3 performance benefits of task

workers pdrdllelism?
But over fime, degree of
0 parallelism keeps dropping in this
example

@ @ o Degree of parallelism is only 3
SO, more than 3 workers is Not

useful for this workload!



Quantifying Benefit of Parallelism: Speedup

Completion time given only 1 worker
Speedup =
Completion time given n (>1) workers

Q: Buf given n workers, can we get a speedup of n¢

't depends!

(On degree of parallelism, task dependency graph structure,
InNfermediate data sizes, efc.)

Q: what kind of graphs can give a speedup of n¢
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Weak and Strong Scaling

Runtime speedup (fixed data size)

12 :
Linear !

3 Speedup E
4 .
Sublinear E

1 Speedup

] 4 8 12
Numlber of workers

Speedup plot / Strong scaling

Runtime speedup

2
Linear Scaleup
1
Sublinear E
0.5 Scaleup

1 4 3 12
Factor (# workers, data size)

Scaleup plot / Weak scaling



Discussion: Is superlinear speedup/scaleup possible?

12 5 2
Linear .
8 speeaup : Linear Scaleup
: | ssm——————
4 E Sublinm
Sublinear E 0.0 Scaleup
1 Speedup

1 4 3 12 1 4 3 12
Number of workers Factor (# workers, data size)
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Some Clarifications on Terms

Completion time given only 1 worker
Speedup =
Completion time given n (>1) workers

®* These terms almost all refer 1o the above, but they are slightly different
* Speedup, acceleration -> strong scaling
* Scaling, scale-up -> weak scaling
* Scalabillity -> both
* “system A Is very scalable”
* When you add 1 more workers, the speedup increase by ~1
® “system A Is more scalable than system B”

* When you add 1 more worker, the speedup of system A is larger than that
of system B
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ldle Times In Task Parallelism

Due to varying task completion times and varying degrees of
oarallelism in workload, idle workers waste resources

Gantt Chart visualization of
schedule:

Given 3
]O workers Wi: 71 T1 | T4 6 T6

W2: T2 15 T5 T5 \TS
s GO
S W3: T3 T3 T3
19 o 5 10 15 20\ b5/ 30 35

[ T,
O |dle times, or
\ “bubbles”
D

Example:
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ldle Times In Task Parallelism

Due to varying task completion times and varying degrees of
oarallelism in workload, idle workers waste resources

Example: * |In general, overall workload's
Given 3 completion tfime on task-parallel
WOrKers setup is always lower bounded by
the longest path in the task graph

e Possibility: A task-parallel scheduler
can “release” a worker if It knows
that will be 1dle till the end

e Can saves costs In cloud
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Calculating Task Parallelism Speedup

Due to varying task completion times and varying degrees of
oarallelism in workload, idle workers waste resources

Example:
Given 3 Completion time  10+5+15+5+
]O workers with 1 worker  20+10 = 65
@20 Parallel completion time 39
S

1o Speedup = 65/35 = 1.9x

[ T,
@ O@ ldeal/linear speedup is 3x
\D Q: Why is it only 1.9x¢



16

Today's topic: Parallelism

® Express data processing in abstraction
* Parallelisms

* Task parallelism

* Data parallelism

®* Parallel Processing Chips



Recall: Data parallelism in ML

Data@ m Worker 1 Worker 2 m @ Data

Data
@ ./VVorkerB Workerji @ Data

U+l — gt) 1 ¢ Z V(W Dg))
=



Data parallelism: abstraction of SIMD/SIMT/SPMD

Q: How to represent data parallelism in dataflow graph notionse

Given 3
workers

S
@@p

D

18

REPREPQPE
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Quantifying Efficiency of Data Parallelism

* As with task parallelism, we measure the speedup:

Completion time given only 1 core
Speedup =
Completion time given n (>1) core



Amdahl’s Law:

Q: But given n cores, can we get a speedup of n¢

It depends! (Just like It did with task parallelism}

« Amdahl’s Law: Formula o upper bound possible speedup

« A program has 2 parts: one that benefits from multi-core
parallelism and one that does nof

 Non-parallel part could be for control, memory stalls, etc.

| core: N COres:

Tyes + 1 N(1 +f
Tyes ——Tyes/N "~ " | )

Speedup =
Tho —— Tno Tyes/N + Tho N+ f

N Denote Tyes/Tho = f
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Amdahl’s Law:

Speedup
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f = Tyes/ Tho
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Nn(1 + f)
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Data parallelism is bullt in with today’s Processors

 Modern computers often have multiple processors and multiple cores
per processor, with a hierarchy of shared caches

Processor 0 Processor 1
Cora 0 Coro 1 Core 2 Core 3
;4 R | CPU CPU CPU CPU
| System |
Agent' & L1 Cache L1 Cache L1 Cache L1 Cache
4 Memory :
==+ IControlleg|

T ‘ | L2 Cache L2 Cache

including

Display;

DMl and
Misc: 1/0
LR - | System Bus L. System Memory
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Single-Instruction Multiple-Data

SIMD

Data Pool

!

Instruction Pool

+
-
D)
—
O
)
0
>

A, L+
] +
A+
] -

Example for SIMD in data science:

Scalar Operation \

SIMD Operation of
Vector Length 4
AH BH CH
AL 1B LS
AE _E_B Cz

Intel” Architecture currently has SIMD
operations of vector length 4, 8, 16



SIMD Generalizations

* Single-Instruction Multiple Thread (SIMT): Generalizes notion of SIMD to
different threads concurrently doing so
* Fach thread may be assigned a core or a whole PU

* Single-Program Multiple Data (SPMD): A higher level of abstraction
generalizing SIMD operations or programs

* Under the hood, may use multiple processes or threads
* Each chunk of data processed by one core/PU

* Applicable to any CPU, not just vectorized PUs

* Most common form of parallel data processing at scale




The Problem of Chip Design

If we're able 1o reduce 1o size
of ALU while keeping ifs power
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* That's why you see trends: 70nm -> 60nm -> 50nm -> ... -> what is the best nowe

1975 1980 1985 1990 1995 2000 2005 2010 2015

Frequency
(MHz)

Typical Power
(Watts) ®

Number of
Cores

That's why you see frends. /0nm ->
60nm -> 50nm -> ... ->what is the best

NOW?¢

Takeaway from hardware trends: it Is
hard for general-purpose CPUs 1o
sustain FLOPs-heavy programs like

deep nefts
Motivated the rise of “acce

for some classes of programs

erators”



Chip Industry: 7/0nm -> 60nm -> 50nm -> ... ->¢

* Problem: this Is not substantiable; there are also power/heat issues

when you put more ALUs in a limited area (s.t. physics limitations)




Chip Industry: Moore’s Law Comes to an End

End of the Line = 2X/20 years (3%/yr)
Amdahl’'s Law = 2X/6 years (12%/year)
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year) ¢

Opfion 1: Go to the

CISOC 2X/2.5 years RISC 2X/1.5 years
e e quantum world
§ 10,000
% 1,000
g 100 '
. 1Y Option 2: Specialized

hardware

1980 1985 1990 1995 2000 2005 2010 2015



|dea: How about we use a lot of weak/specialized cores

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

L2 Cache

DRAM

CPU GPU
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Haraware Accelerators: GPUs

» Graphics Processing Unit (GPU): Tailored for matrix/tensor ops

« Basic idea: Use tons of ALUs (but weak and more specialized); massive

data parallelism (SIMD on steroids); now H100 offers ~980 TFLOPS for
FP16!

« Popularized by NVIDIA in early 2000s for video games, graphics, and
multimedia; now ubiguitous in DL

« CUDA released in 2007; later wrapper APIls on top: CuDNN, CuSparse,
CuDF (RapidsAl), NCCL, etc.
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Other Hardware Accelerators

* F.Q.

®* Tensor Processing Unit (TPU)
* An “"application-speciftic integrated circuit” (ASIC) created by
Google in mid 2010s; used for AlohaGo
°* F.Q.
®* B200 (projected release 2025): fp4 / tp8 Tensorcore
* F.Q.

* M3 max: mixing tensorcore and normal core



What Does It Mean by “Specialized” In accelerator world

In General:

* Functionality-specialized:
* Can only compute certain computations: matmul, w/ sparsity
* MiIXIng specialized cores with versatile cores

® Reduce precision
* Floating point operations: fp32, fplé6, fp8, INt8, Int4, ...

®* Tune the distribution of different components for specific
workloads

* SRAM, cache, registers, efc.
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Comparing Modern Parallel Hardware

Peak FLOPS

Power
Consumption

Cost

Generality /

Flexibility

Fitness for
DL Training?

Fitness for
DL Inference?

Cloud Vendor

Support

Moderate High High
High Very High Very Low
Low High Very High

Highest Medium Very High
Poor Fit Best Fit Poor Fit
Moderate Moderate Good Fit
All All All

ASICs

(e.g., TPUs)

Very High

Low-Very Low

Highest

Lowest

Potential exists but
not mass market

Best Fit

GCP

httne/\www embedded com/leavveraaina-fnaac-far-deen-laarnina/
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https://www.embedded.com/leveraging-fpgas-for-deep-learning/
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Case Study 1: Nvidia GPU Specification

FP64 Tensor Core 67 teraFLOPS
BFLOATI16 Tensor Core" 1,979 teraFLOPS
FP16 Tensor Core’ 1,979 teraFLOPS
FP8 Tensor Core" 3,958 teraFLOPS
INT8 Tensor Core" 3,958 TOPS
GPU Memory 80GB
GPU Memory Bandwidth 3.35TB/s
Decoders 7 NVDEC

7 JPEG

Max Thermal Design Power .
Up to 700W (configurable)

(TDP)

Multi-Instance GPUs Up to 7 MIGS @ 10GB each
Form Factor SXM
Interconnect NVIDIA NVLink™: 900GB/s

PCle Gen5: 128GB/s

NVIDIA HGX H100 Partner and NVIDIA-
Server Options Certified Systems™ with 4 or 8 GPUs
NVIDIA DGX H100 with 8 GPUs

NVIDIA Al Enterprise Add-on

* With sparsity



Case Study 1: Nvidia GPU Specification

Structured-sparse Structured-sparse and
matrix W compressed matrix W
Fine-grained
structured-sparse
matrlx format
R X C/2 elements +
R X C/2 2bits meta
data
fe— [, — — C/2 —i |-—|C/2

D = zero entry Non-zero data 2- blts
values indices



Case Study

FP64 Tensor Core

FP32

TF32 Tensor Core’

BFLOATI6 Tensor Core”

FP16 Tensor Core”

67 teraFLOPS

67 teraFLOPS

989 teraFLOPS

1,979 teraFLOPS

1,979 teraFLOPS

FP8 Tensor Core" 3,958 teraFLOPS

INT8 Tensor Core"

GPU Memory

GPU Memory Bandwidth

Decoders

Max Thermal Design Power
(TDP)

Multi-Instance GPUs

Form Factor

Interconnect

Server Options

NVIDIA Al Enterprise

* With sparsity

3,958 TOPS

80GB

3.35TB/s

7 NVDEC
7 JPEG

Up to 700W (configurable)

Up to 7 MIGS @ 10GB each

SXM

NVIDIA NVLink™: 900GB/s
PCle Gen5: 128GB/s

NVIDIA HGX H100 Partner and NVIDIA-
Certified Systems™ with 4 or 8 GPUs
NVIDIA DGX H100 with 8 GPUs

Add-on

1: Nvidia GPU Specification

Sign 1 bit

Exponent B bits Frecision 23 bits

i< 11111111

Exponent 8 bits

srioatis [ I I I I I I I

Exponent 5 bits

Feic [ I I I I

Precision 7 bits

Precision 10 bits

Question: why this could work in
ML programse



Case Study 2: Apple Silicon

B i 3-nanometer
o ens e ene | technology
Zobilion 3/ billion 92 billion

Dynamic Caching transistors transistors transistors

Upto

Next-generation ’ » P
GPU architecture W Z .bX

g s Faster GPU rendering
M3 | §M3
PRO MAX

Advanced Media Engine

e \ _ Faster 16-core
LLJ Y Neural Engine
with AV1 decode

Upto Up to Up to
3-core CPU 12-core CPU 1o-core CPU
10-core GPU 18-core GPU 40-core GPU
24GB 30GB 128GB

Hardware-accelerated unified memory unified memory unified memory Hardware-accelerated
ray tracing mesh shading




Case Study 2: Apple Silicon Revealed

Up to 128GB of unified memory
92 billion transistors

16-core CPU

12 performance cores

4 efficiency cores
Up to 80% faster than M1 Max

Up to 50% faster than M2 Max

40-core GPU

Next-generation architecture
Dynamic Caching

Mesh shading

Ray tracing

Up to 50% faster than M1 Max
Up to 20% faster than M2 Max




Specialized Hardware tor DS/ML Is a really good business

Market Summary > NVIDIA Corp

1 80.28 uSD

+180.24 (450,600.00%) 4 all time

Closed: Oct 22, 7:59PM EDT -+ Disclaimer
After hours 179.70 -0.58 (0.32%)

1D oD ™ oM YTD 1Y oY Max
200
150
100 -

‘' Reuters
50

A ; T o o
O | 1e028usp ooz 2008 | Nvidia outstrips Alphabet as third largest US
20|02 20I06 20|'|U 20[14 20|18 2022 k:ompany by market Value

Open 181.14 Mkt cap 4.38T 52-wk high 195.62
High 183.44 P/E ratio 51.31 52-wk low 86.63 1 hour ago

Low 176.76 Div yield 0.022% Qtrly Div Amt 0.010



Case Study 3: Leading Chip Startups

9 roq @erebras §))SambaNovar




Summary

* Dataflow Graph
* Two major parallelisms:
®* Task parallelism -> partitioning the dataflow graph
* Data parallel -> partitioning the dato
* Data parallelism Is ubiguitous, bullt In modern chips and

everywhere.



Take-home Exercise

* Study B100 specitication and compare it to H100
* How nvidia claims another 2x from H100 -> B100¢

* Study Apple M5 and compare it to M3
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