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Where We Are 

Cloud 

Networking

Collective 
communication

Datacenter 
networking

Storage

(Distributed) File 

Systems / Database

Cloud storage 

Part3: Compute

Distributed 
Computing

Motivations, Economics, Ecosystems, 
Trends

Big data 
processing
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Parallelism

Key parallelism paradigms in data systems
• assuming there will be coordination:

Replicated

Partitioned

Shared Replicated Partitioned
data

Task parallelism

Data 

parallelism

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps

also across machines/workers (aka “Divide and Conquer”)

func

Hybrid 

parallelism

N/A (rare cases)



Terms are confusing 

• Different domains term them differently in different contexts

• Architecture/parallel computing: single-node multi-cores

• SIMD, MIMD, SIMT

• Distributed system: multiple-node multi-cores

• SPMD vs. MPMD

• Machine learning community

• Data parallelism vs. Model parallelism

• Inter-operator parallelism vs. Intra-operator parallelism
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Today’s topic: Parallelism 

• Express data processing in abstraction

• Parallelisms

• Task parallelism

• Data parallelism 

• Terms: SIMD, SIMT, SPMD, MPMD
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Task Parallelism

Basic Idea: Split up tasks across workers; if there is a common 

dataset that they read, just make copies of it (aka replication)

T1

D

T2 T3

T4 T5

T6

Example:

2) Put T1 on worker 1 (W1), T2 on W2, 
T3 on W3; run all 3 in parallel

1) Copy whole D to all workers

Given 3 
workers

3) After T1 ends, run T4 on W1; after T2 
ends, run T5 on W2; after T3 ends, W3 is idle

4) After T4 & T5 end, run T6 on W1; W2 is 
idle



7

Task Parallelism

• Topological sort of tasks in task graph for scheduling

• Notion of a “worker” can be at processor/core level, not just at 

node/server level

• Thread-level parallelism possible instead of process-level

• E.g., Ray: 4 worker nodes x 4 cores = 16 workers total

• Main pros of task parallelism:

• Simple to understand

• Independence of workers => low software complexity

• Main cons of task parallelism:

• Can be difficult to implement

• Idle times possible on workers

Task Parallelism



8

Degree of Parallelism

• The largest amount of concurrency possible in the task 
graph, i.e., how many task can be run simultaneously

T1

D

T2 T3

T4 T5

T6

Example:

Given 3 
workers

Degree of parallelism is only 3

So, more than 3 workers is not 

useful for this workload!

Q: How do we quantify the runtime 

performance benefits of task 
parallelism?

But over time, degree of 

parallelism keeps dropping in this 
example
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Quantifying Benefit of Parallelism: Speedup

Speedup = 
Completion time given only 1 worker

Completion time given n (>1) workers

Q: But given n workers, can we get a speedup of n?

It depends!

(On degree of parallelism, task dependency graph structure, 

intermediate data sizes, etc.)

Q: what kind of graphs can give a speedup of n?
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Weak and Strong Scaling

Number of workers

Runtime speedup (fixed data size)

1 4 8 12

1

4

8

12

Linear 

Speedup

Sublinear

Speedup

Factor (# workers, data size)

Runtime speedup

1 4 8 12

1

0.5

2

Linear Scaleup

Sublinear

Scaleup

Speedup plot / Strong scaling Scaleup plot / Weak scaling



Discussion: Is superlinear speedup/scaleup possible?

Number of workers
1 4 8 12

1

4

8

12

Linear 

Speedup

Sublinear

Speedup

Factor (# workers, data size)
1 4 8 12

1

0.5

2

Linear Scaleup

Sublinear

Scaleup
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Some Clarifications on Terms

• These terms almost all refer to the above, but they are slightly different

• Speedup, acceleration -> strong scaling

• Scaling, scale-up -> weak scaling

• Scalability -> both

• “system A is very scalable”

• When you add 1 more workers, the speedup increase by ~1

• “system A is more scalable than system B”

• When you add 1 more worker, the speedup of system A is larger than that 

of system B

Speedup = 
Completion time given only 1 worker

Completion time given n (>1) workers
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Idle Times in Task Parallelism

Due to varying task completion times and varying degrees of 

parallelism in workload, idle workers waste resources

T1

D

T2 T3

T4 T5

T6

Example:

Given 3 

workers

Gantt Chart visualization of 

schedule:

15
5

10

20
5

10
W1: T1 T1 T4 T6 T6

W2: T2 T5 T5 T5 T5

W3: T3 T3 T3

0 5 10 15 20 25 30 35

Idle times, or 
“bubbles”
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Idle Times in Task Parallelism

Due to varying task completion times and varying degrees of 

parallelism in workload, idle workers waste resources

T1

D

T2 T3

T4 T5

T6

Example:

Given 3 

workers

15
5

10

20
5

10

• In general, overall workload’s 

completion time on task-parallel 

setup is always lower bounded by 

the longest path in the task graph

• Possibility: A task-parallel scheduler 

can “release” a worker if it knows 

that will be idle till the end

• Can saves costs in cloud
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Calculating Task Parallelism Speedup

Due to varying task completion times and varying degrees of 

parallelism in workload, idle workers waste resources

T1

D

T2 T3

T4 T5

T6

Example:

Given 3 
workers

15
5

10

20
5

10

Speedup = 65/35 = 1.9x

Completion time 

with 1 worker

10+5+15+5+

20+10 = 65

Parallel completion time 35

Ideal/linear speedup is 3x

Q: Why is it only 1.9x?
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Today’s topic: Parallelism 

• Express data processing in abstraction

• Parallelisms

• Task parallelism

• Data parallelism 

• Parallel Processing Chips



Recall: Data parallelism in ML

Sync

Worker 1 Worker 2

Worker 3 Worker 4

Data

Data

Data

Data
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Data parallelism: abstraction of SIMD/SIMT/SPMD
“Data Parallel” Multi-core Execution

Q: How to represent data parallelism in dataflow graph notions?

Given 3 
workers

T1 T2 T3

T4 T5

T6

D

T1 T2 T3

T4 T5

T6

D1

T1 T2 T3

T4 T5

T6

D2

T1 T2 T3

T4 T5

T6

D3
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Quantifying Efficiency of Data Parallelism

• As with task parallelism, we measure the speedup: 

Speedup = 
Completion time given only 1 core

Completion time given n (>1) core
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Amdahl’s Law:

• Amdahl’s Law: Formula to upper bound possible speedup

• A program has 2 parts: one that benefits from multi-core 

parallelism and one that does not

• Non-parallel part could be for control, memory stalls, etc.

Q: But given n cores, can we get a speedup of n?

It depends! (Just like it did with task parallelism)

Tno

Tyes

1 core:

Speedup = 

n cores:

Tno

Tyes/n
Tyes + Tno

Tyes/n + Tno

=
n(1 + f)

n + f

Denote Tyes/Tno = f
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Amdahl’s Law:

Speedup = 

n(1 + f)

n + f

f = Tyes/Tno

Parallel portion =

 f / (1 + f)
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Data parallelism is built in with today’s Processors 

• Modern computers often have multiple processors and multiple cores

per processor, with a hierarchy of shared caches
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Single-Instruction Multiple-Data

Example for SIMD in data science:
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SIMD Generalizations

• Single-Instruction Multiple Thread (SIMT): Generalizes notion of SIMD to 

different threads concurrently doing so

• Each thread may be assigned a core or a whole PU

• Single-Program Multiple Data (SPMD): A higher level of abstraction 

generalizing SIMD operations or programs

• Under the hood, may use multiple processes or threads

• Each chunk of data processed by one core/PU

• Applicable to any CPU, not just vectorized PUs

• Most common form of parallel data processing at scale



The Problem of Chip Design

Control

Caches

ALU ALU

ALU ALU
Control

Caches

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

If we’re able to reduce to size 
of ALU while keeping its power
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• That’s why you see trends: 70nm -> 60nm -> 50nm -> … -> what is the best now?

• That’s why you see trends: 70nm -> 

60nm -> 50nm -> … -> what is the best 

now?

• Takeaway from hardware trends: it is 

hard for general-purpose CPUs to 

sustain FLOPs-heavy programs like 

deep nets

• Motivated the rise of “accelerators” 

for some classes of programs



Chip Industry: 70nm -> 60nm -> 50nm -> … ->?

• Problem: this is not substantiable; there are also power/heat issues 

when you put more ALUs in a limited area (s.t. physics limitations)



Chip Industry: Moore’s Law Comes to an End

Option 1: Go to the

quantum world

Option 2: Specialized

hardware



Idea: How about we use a lot of weak/specialized cores
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Hardware Accelerators: GPUs

• Graphics Processing Unit (GPU): Tailored for matrix/tensor ops

• Basic idea: Use tons of ALUs (but weak and more specialized); massive 

data parallelism (SIMD on steroids); now H100 offers ~980 TFLOPS for 

FP16!

• Popularized by NVIDIA in early 2000s for video games, graphics, and 

multimedia; now ubiquitous in DL

• CUDA released in 2007; later wrapper APIs on top: CuDNN, CuSparse, 

CuDF (RapidsAI), NCCL, etc.
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Other Hardware Accelerators
Other Hardware Accelerators

• E.g.

• Tensor Processing Unit (TPU)

• An “application-specific integrated circuit” (ASIC) created by 

Google in mid 2010s; used for AlphaGo

• E.g.

• B200 (projected release 2025): fp4 / fp8 Tensorcore

• E.g.

• M3 max: mixing tensorcore and normal core



What Does It Mean by “Specialized” In accelerator world

In General:

• Functionality-specialized:

• Can only compute certain computations: matmul, w/ sparsity

• Mixing specialized cores with versatile cores

• Reduce precision

• Floating point operations: fp32, fp16, fp8, int8, int4, …

• Tune the distribution of different components for specific

workloads

• SRAM, cache, registers, etc.
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Comparing Modern Parallel Hardware

https://www.embedded.com/leveraging-fpgas-for-deep-learning/

Multi-core CPU GPU FPGA
ASICs 

(e.g., TPUs)

Peak FLOPS

Power 
Consumption

Cost

Generality / 
Flexibility

Fitness for 
DL Training?

Fitness for 
DL Inference?

Cloud Vendor 
Support

Moderate High High Very High

High Very High Very Low Low-Very Low

Low High Very High Highest

Highest Medium Very High Lowest

Poor Fit Best Fit Poor Fit
Potential exists but 

not mass market

Moderate Moderate Good Fit Best Fit

All All All GCP

https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/


Case Study 1: Nvidia GPU Specification



Case Study 1: Nvidia GPU Specification



Case Study 1: Nvidia GPU Specification

Question: why this could work in

ML programs?



Case Study 2: Apple Silicon



Case Study 2: Apple Silicon Revealed



Specialized Hardware for DS/ML is a really good business



Case Study 3: Leading Chip Startups



Summary

• Dataflow Graph

• Two major parallelisms:

• Task parallelism -> partitioning the dataflow graph

• Data parallel -> partitioning the data

• Data parallelism is ubiquitous, built in modern chips and 

everywhere. 



Take-home Exercise

• Study B100 specification and compare it to H100

• How nvidia claims another 2x from H100 -> B100?

• Study Apple M5 and compare it to M3
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