DSC 204A: Scalable Data Systems Fall 2025

Staff
Instructor: Hao Zhang
TAs: Mingjia Huo, Yuxuan Zhang

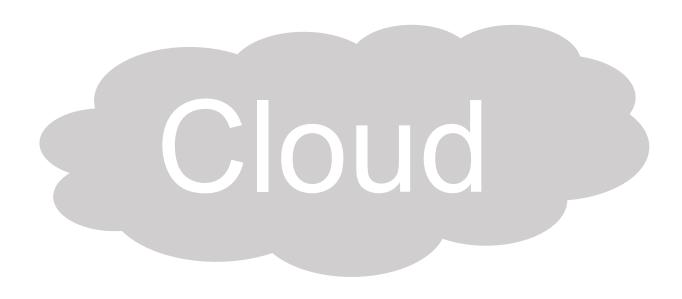
② @haozhangml ② @haoailab

 haozhang@ucsd.edu

Where We Are

Motivations, Economics, Ecosystems,

Trends



Networking

Storage

Part3: Compute

Datacenter networking

Collective communication

(Distributed) File Systems / Database

Cloud storage

Distributed Computing

Big data processing

Parallelism

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps also across machines/workers (aka "Divide and Conquer")

Key parallelism paradigms in data systems

assuming there will be coordination:

data func	Shared	Replicated	Partitioned
Replicated	N/A (ro	are cases)	Data parallelism
Partitioned	Task p	arallelism	Hybrid parallelism

Terms are confusing

- Different domains term them differently in different contexts
- Architecture/parallel computing: single-node multi-cores
 - SIMD, MIMD, SIMT
- Distributed system: multiple-node multi-cores
 - SPMD vs. MPMD
- Machine learning community
 - Data parallelism vs. Model parallelism
 - Inter-operator parallelism vs. Intra-operator parallelism

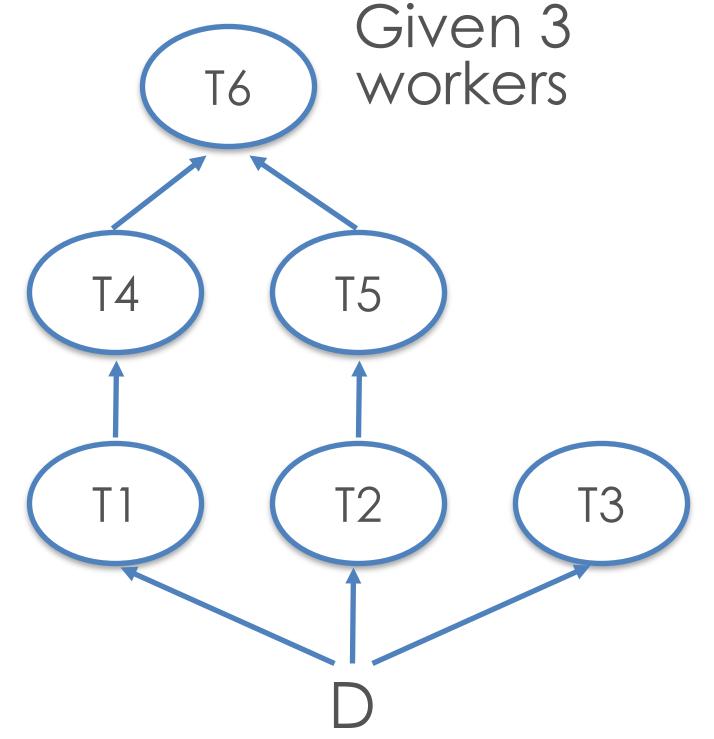
Today's topic: Parallelism

- Express data processing in abstraction
- Parallelisms
 - Task parallelism
 - Data parallelism
 - Terms: SIMD, SIMT, SPMD, MPMD

Task Parallelism

Basic Idea: Split up *tasks* across workers; if there is a common dataset that they read, just make copies of it (aka *replication*)

Example:



- 4) After T4 & T5 end, run T6 on W1; W2 is idle
- 3) After T1 ends, run T4 on W1; after T2 ends, run T5 on W2; after T3 ends, W3 is idle
 - 2) Put T1 on worker 1 (W1), T2 on W2, T3 on W3; run all 3 in parallel
 - 1) Copy whole D to all workers

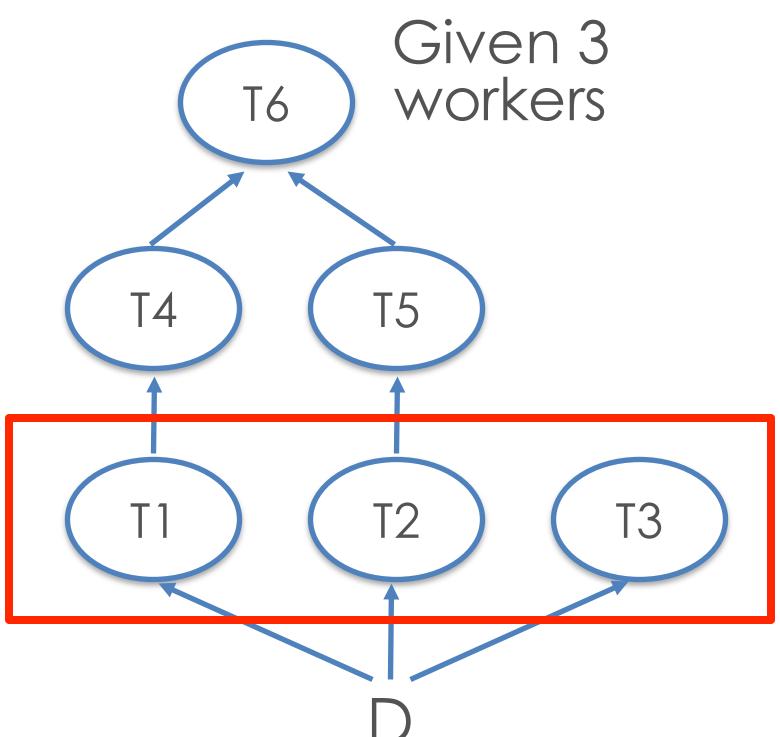
Task Parallelism

- Topological sort of tasks in task graph for scheduling
- Notion of a "worker" can be at processor/core level, not just at node/server level
 - Thread-level parallelism possible instead of process-level
 - E.g., Ray: 4 worker nodes x 4 cores = 16 workers total
- Main pros of task parallelism:
 - Simple to understand
 - Independence of workers => low software complexity
- Main cons of task parallelism:
 - Can be difficult to implement
 - Idle times possible on workers

Degree of Parallelism

• The largest amount of concurrency possible in the task graph, i.e., how many task can be run simultaneously

Example:



Q: How do we quantify the runtime performance benefits of task parallelism?

But over time, degree of parallelism keeps dropping in this example

Degree of parallelism is only 3

So, more than 3 workers is not useful for this workload!

Quantifying Benefit of Parallelism: Speedup

Completion time given only 1 worker

Speedup =

Completion time given n (>1) workers

Q: But given n workers, can we get a speedup of n?

It depends!

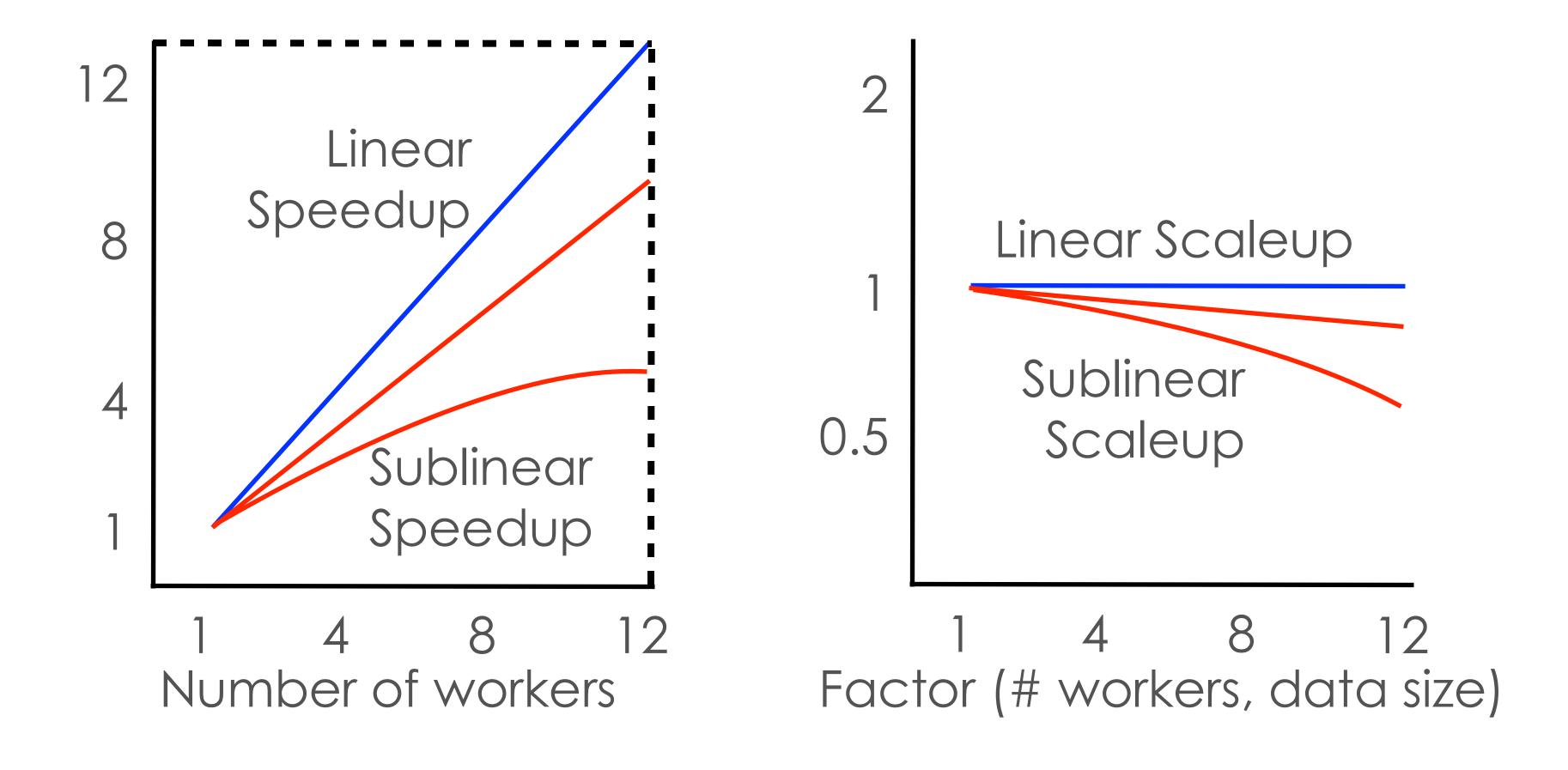
(On degree of parallelism, task dependency graph structure, intermediate data sizes, etc.)

Q: what kind of graphs can give a speedup of n?

Weak and Strong Scaling

Runtime speedup Runtime speedup (fixed data size) 12 Linear Speedup Linear Scaleup 8 Sublinear 0.5 Scaleup Sublinear Speedup Number of workers Factor (# workers, data size) Speedup plot / Strong scaling Scaleup plot / Weak scaling

Discussion: Is superlinear speedup/scaleup possible?



Some Clarifications on Terms

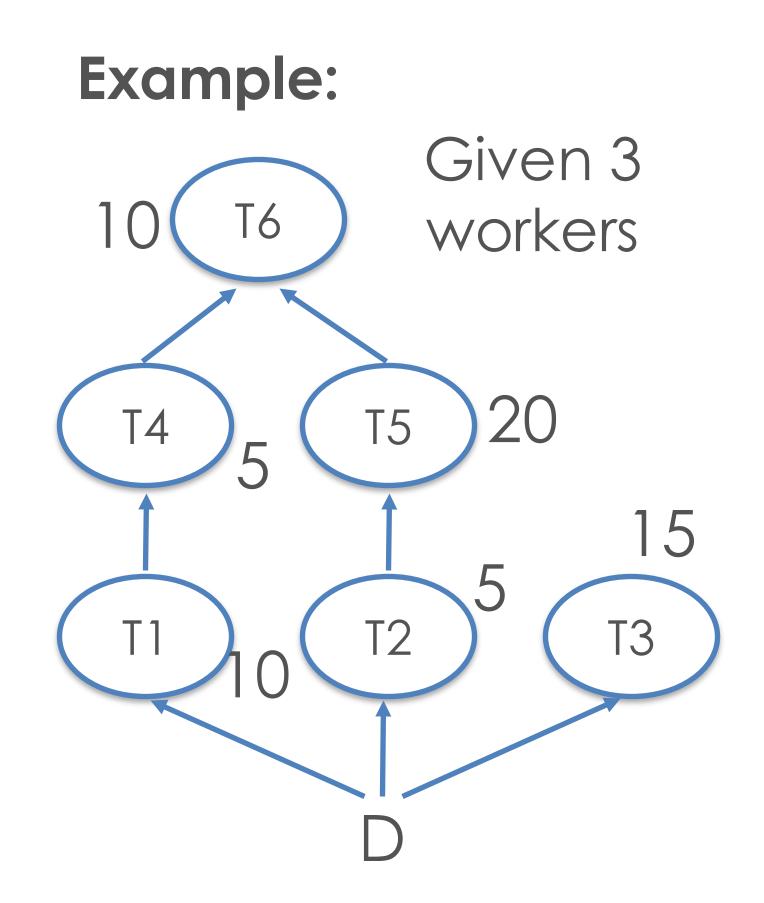
Speedup = Completion time given only 1 worker

Completion time given n (>1) workers

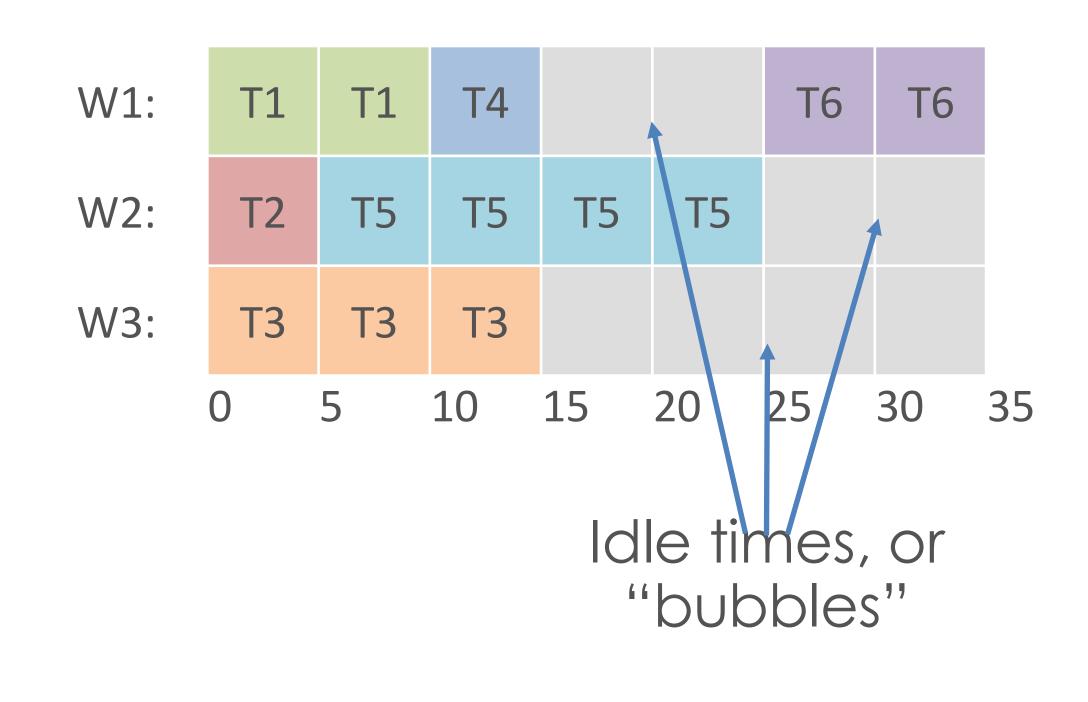
- These terms almost all refer to the above, but they are slightly different
 - Speedup, acceleration -> strong scaling
 - Scaling, scale-up -> weak scaling
 - Scalability -> both
- "system A is very scalable"
 - When you add 1 more workers, the speedup increase by ~1
- "system A is more scalable than system B"
 - When you add 1 more worker, the speedup of system A is larger than that of system B

Idle Times in Task Parallelism

Due to varying task completion times and varying degrees of parallelism in workload, idle workers waste resources



Gantt Chart visualization of schedule:



Idle Times in Task Parallelism

Due to varying task completion times and varying degrees of parallelism in workload, idle workers waste resources

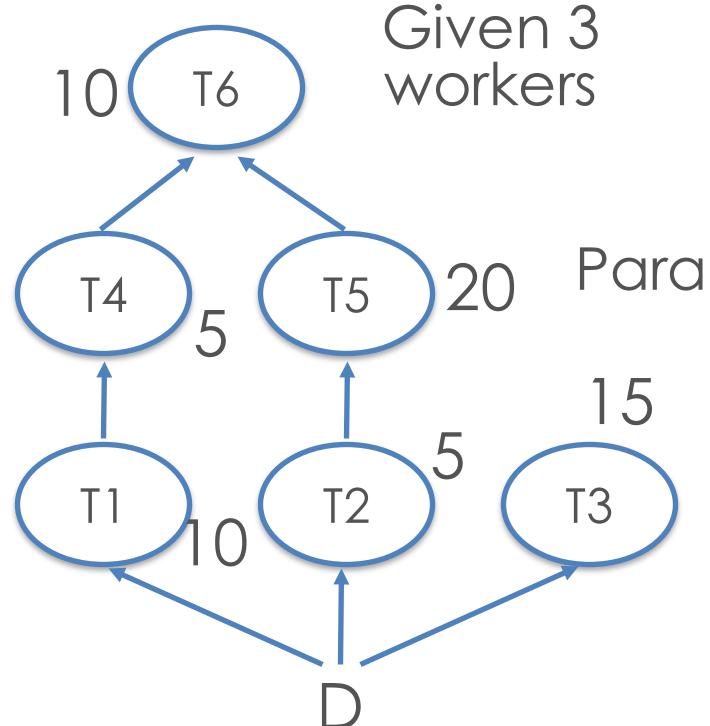
Given 3 workers T4 5 T5 20 T1 10 T2 T3

- In general, overall workload's completion time on task-parallel setup is always lower bounded by the longest path in the task graph
- Possibility: A task-parallel scheduler can "release" a worker if it knows that will be idle till the end
- Can saves costs in cloud

Calculating Task Parallelism Speedup

Due to varying task completion times and varying degrees of parallelism in workload, idle workers waste resources

Example:



Completion time 10+5+15+5+ with 1 worker 20+10=65

Parallel completion time 35

Speedup = 65/35 = 1.9x

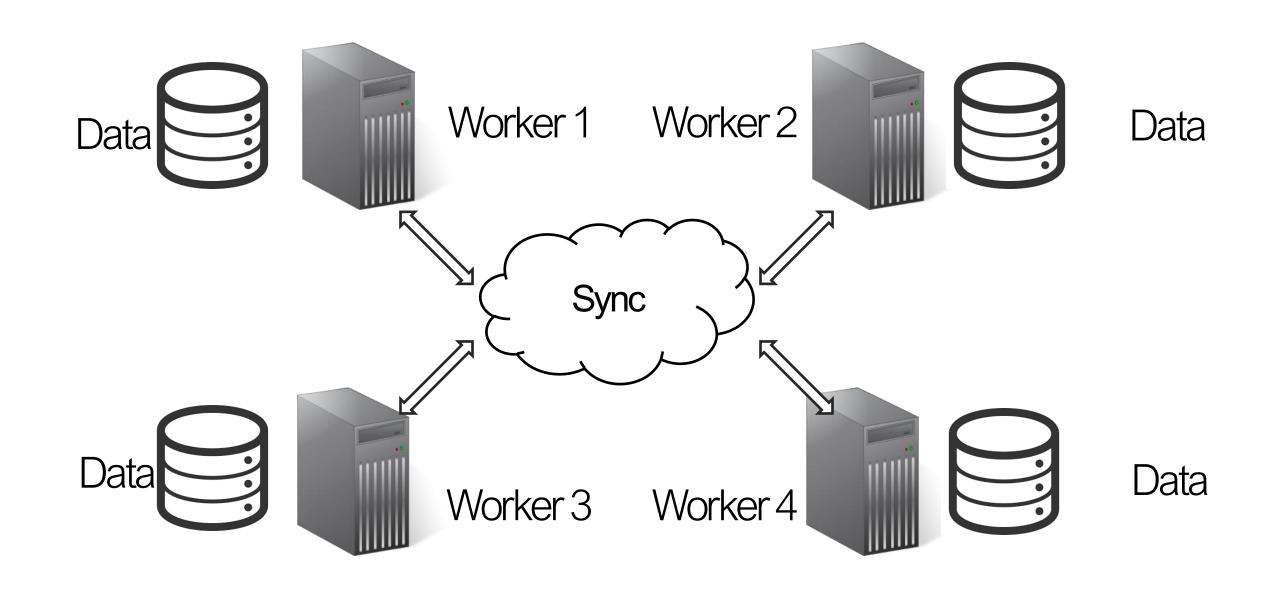
Ideal/linear speedup is 3x

Q: Why is it only 1.9x?

Today's topic: Parallelism

- Express data processing in abstraction
- Parallelisms
 - Task parallelism
 - Data parallelism
 - Parallel Processing Chips

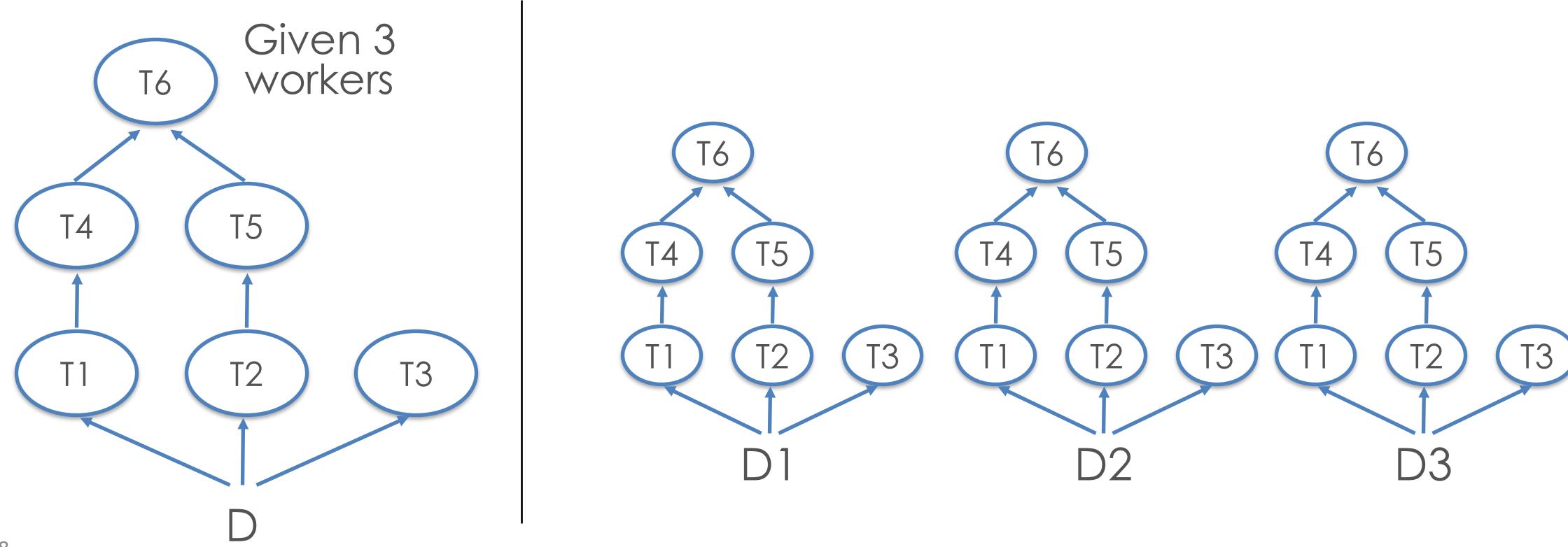
Recall: Data parallelism in ML



$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} + oldsymbol{arepsilon} \sum_{p=1}^P
abla_{\mathcal{L}}(oldsymbol{ heta}^{(t)}, D_p^{(t)})$$

Data parallelism: abstraction of SIMD/SIMT/SPMD

Q: How to represent data parallelism in dataflow graph notions?



Quantifying Efficiency of Data Parallelism

As with task parallelism, we measure the speedup:

Speedup = Completion time given only 1 core

Completion time given n (>1) core

Amdahl's Law:

Q: But given n cores, can we get a speedup of n?

It depends! (Just like it did with task parallelism)

- Amdahl's Law: Formula to upper bound possible speedup
 - A program has 2 parts: one that benefits from multi-core parallelism and one that does not
 - Non-parallel part could be for control, memory stalls, etc.

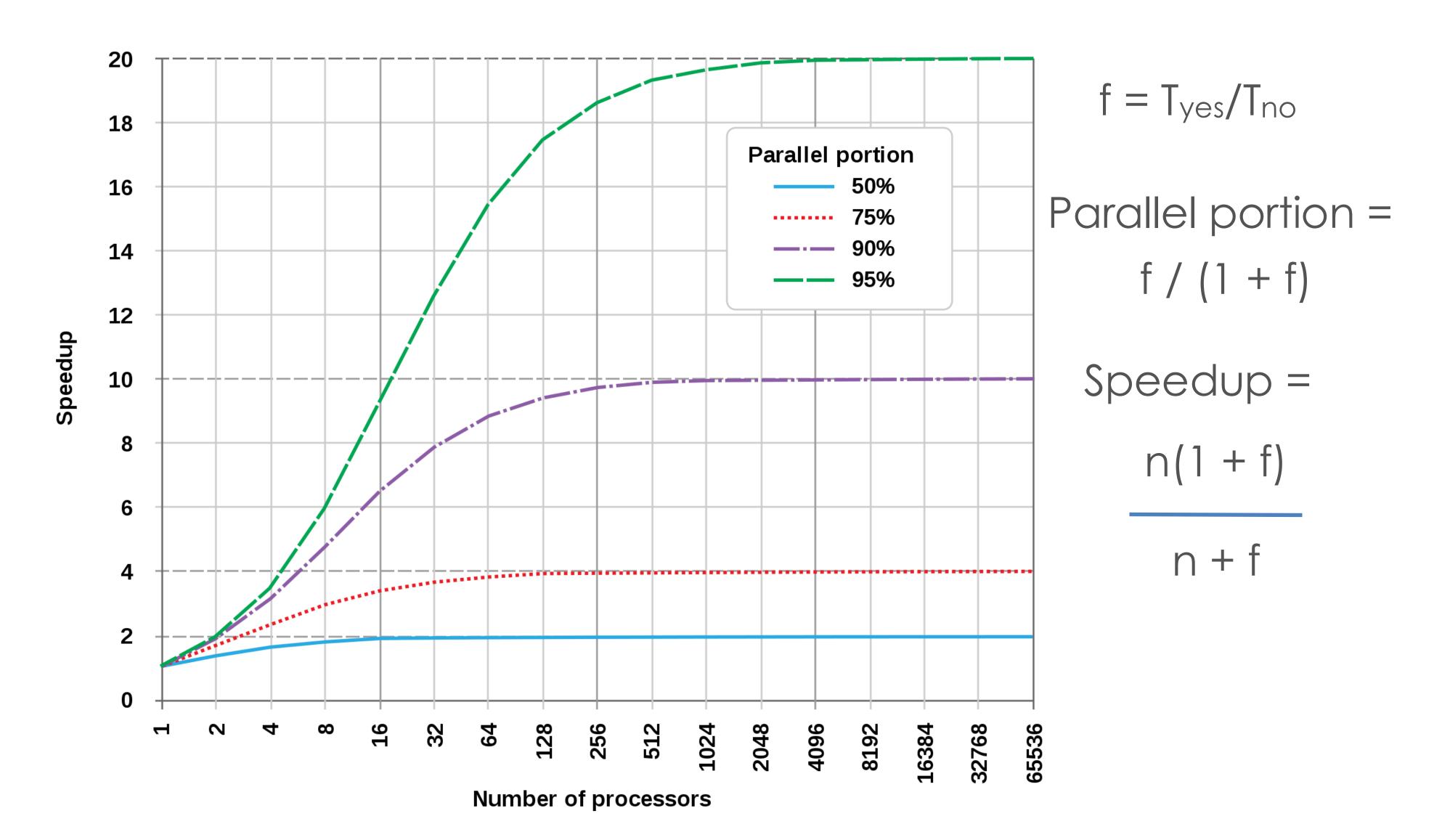
1 core: n cores:

$$T_{yes} \longrightarrow T_{yes}/n$$
 $T_{no} \longrightarrow T_{no}$

Speedup = $\frac{T_{yes} + T_{no}}{T_{yes}/n + T_{no}} = \frac{n(1+f)}{n+f}$

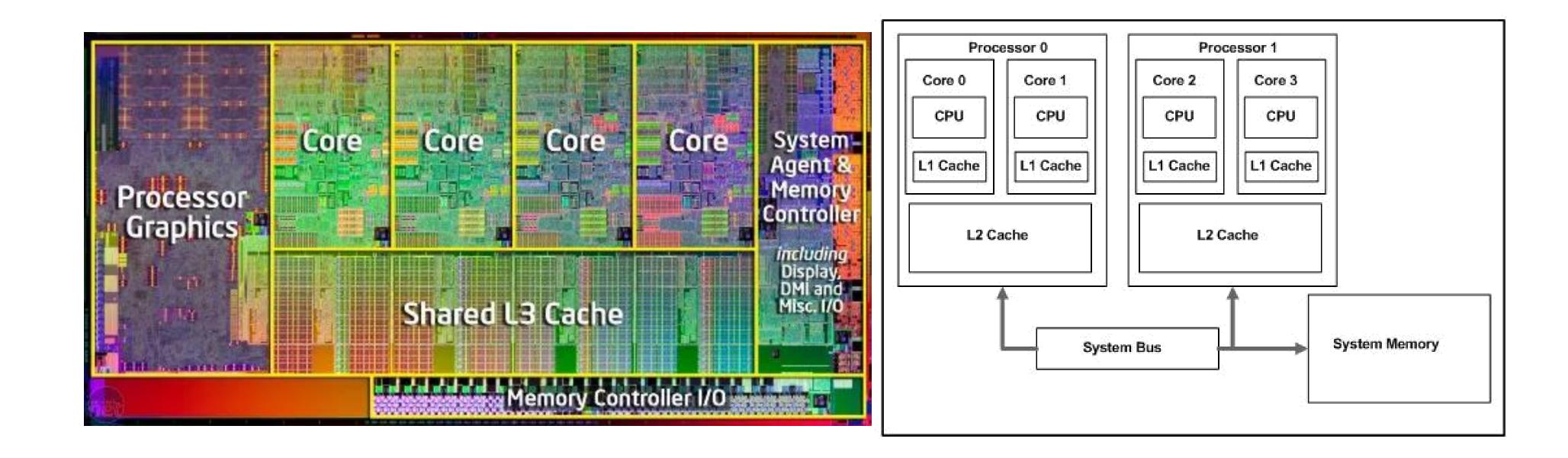
Denote $T_{yes}/T_{no} = f$

Amdahl's Law:

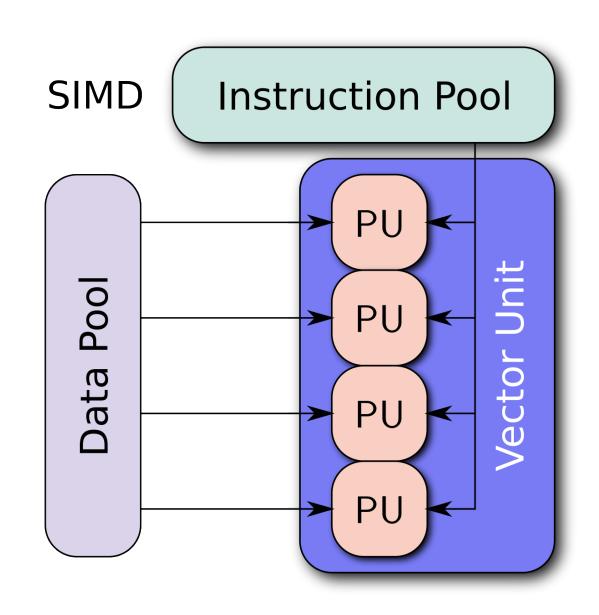


Data parallelism is built in with today's Processors

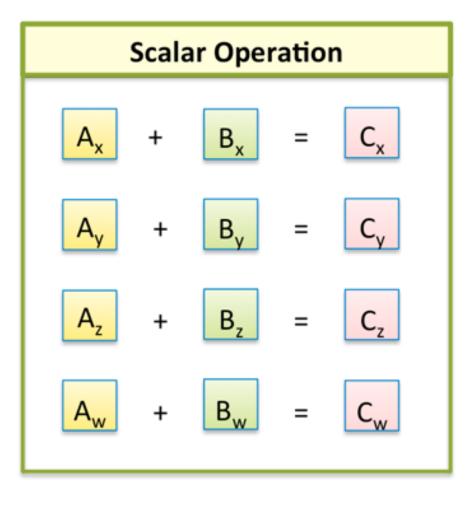
Modern computers often have multiple processors and multiple cores
per processor, with a hierarchy of shared caches



Single-Instruction Multiple-Data



Example for SIMD in data science:





Intel® Architecture currently has SIMD operations of vector length 4, 8, 16

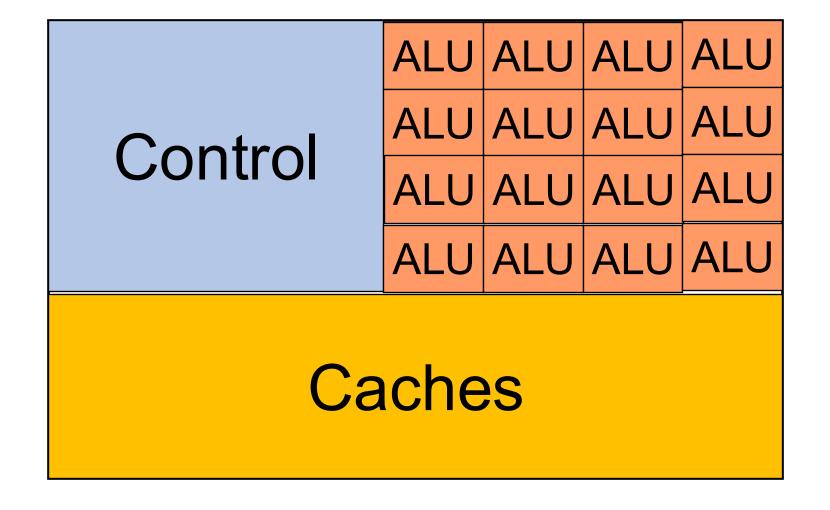
SIMD Generalizations

- Single-Instruction Multiple Thread (SIMT): Generalizes notion of SIMD to different threads concurrently doing so
 - Each thread may be assigned a core or a whole PU
- Single-Program Multiple Data (SPMD): A higher level of abstraction generalizing SIMD operations or programs
 - Under the hood, may use multiple processes or threads
 - Each chunk of data processed by one core/PU
 - Applicable to any CPU, not just vectorized PUs
 - Most common form of parallel data processing at scale

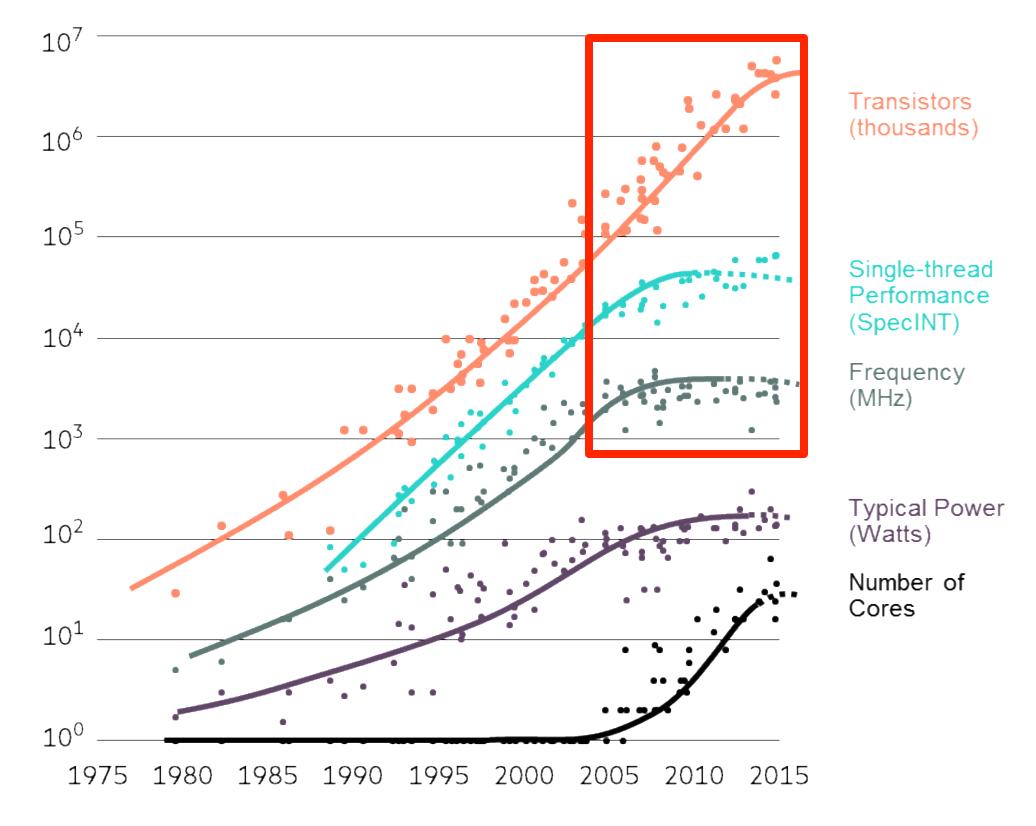
The Problem of Chip Design

Control ALU ALU ALU ALU Caches

If we're able to reduce to size of ALU while keeping its power



• That's why you see trends: 70nm -> 60nm -> 50nm -> ... -> what is the best now?

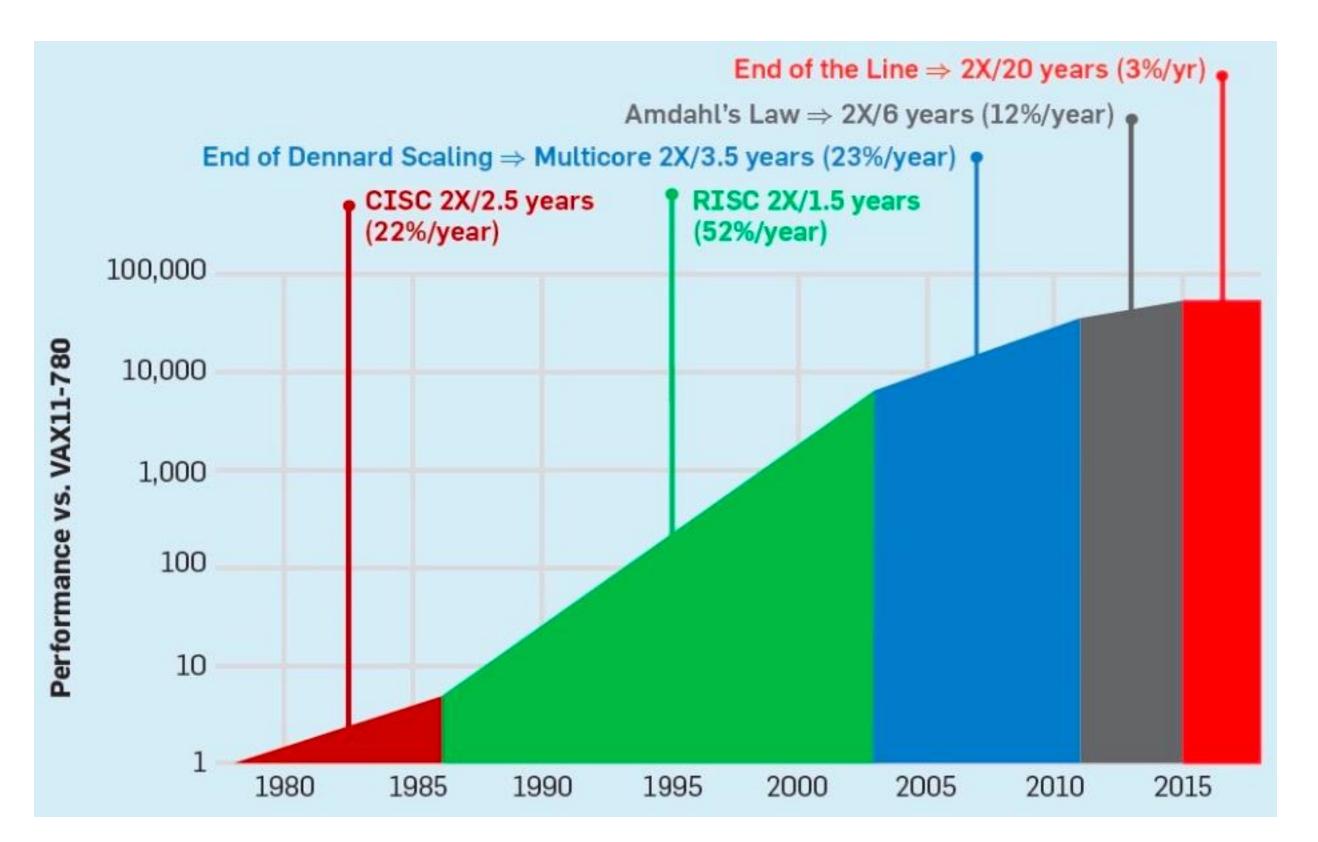


- That's why you see trends: 70nm -> 60nm -> 50nm -> ... -> what is the best now?
- Takeaway from hardware trends: it is hard for general-purpose CPUs to sustain FLOPs-heavy programs like deep nets
- Motivated the rise of "accelerators" for some classes of programs

Chip Industry: 70nm -> 60nm -> 50nm -> ... ->?

• Problem: this is not substantiable; there are also power/heat issues when you put more ALUs in a limited area (s.t. physics limitations)

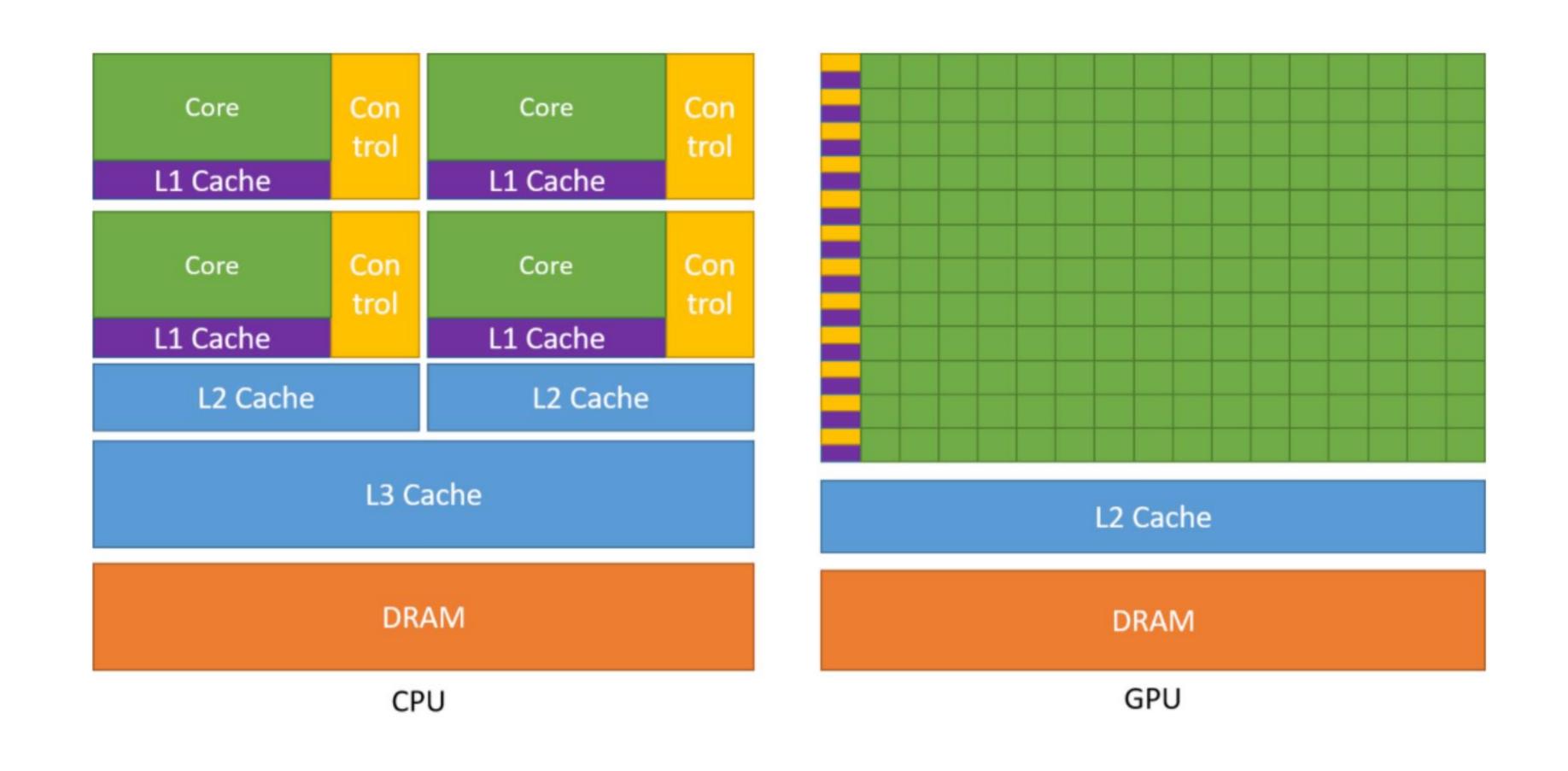
Chip Industry: Moore's Law Comes to an End



Option 1: Go to the quantum world

Option 2: Specialized hardware

Idea: How about we use a lot of weak/specialized cores



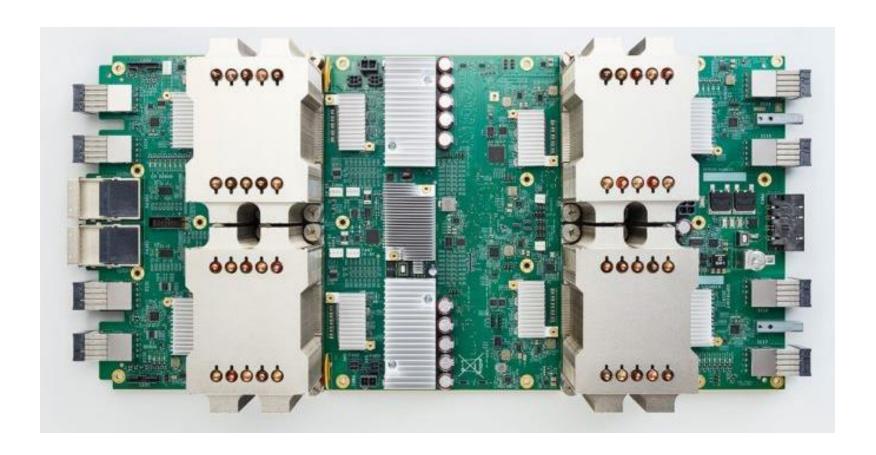
Hardware Accelerators: GPUs

- Graphics Processing Unit (GPU): Tailored for matrix/tensor ops
- Basic idea: Use tons of ALUs (but weak and more specialized); massive data parallelism (SIMD on steroids); now H100 offers ~980 TFLOPS for FP16!
- Popularized by NVIDIA in early 2000s for video games, graphics, and multimedia; now ubiquitous in DL
- CUDA released in 2007; later wrapper APIs on top: CuDNN, CuSparse,
 CuDF (RapidsAI), NCCL, etc.

Other Hardware Accelerators

- E.g.
 - Tensor Processing Unit (TPU)

- E.g.
 - B200 (projected release 2025): fp4 / fp8 Tensorcore
- E.g.
 - M3 max: mixing tensorcore and normal core



What Does It Mean by "Specialized" In accelerator world

In General:

- Functionality-specialized:
 - Can only compute certain computations: matmul, w/ sparsity
 - Mixing specialized cores with versatile cores
- Reduce precision
 - Floating point operations: fp32, fp16, fp8, int8, int4, ...
- Tune the distribution of different components for specific workloads
 - SRAM, cache, registers, etc.

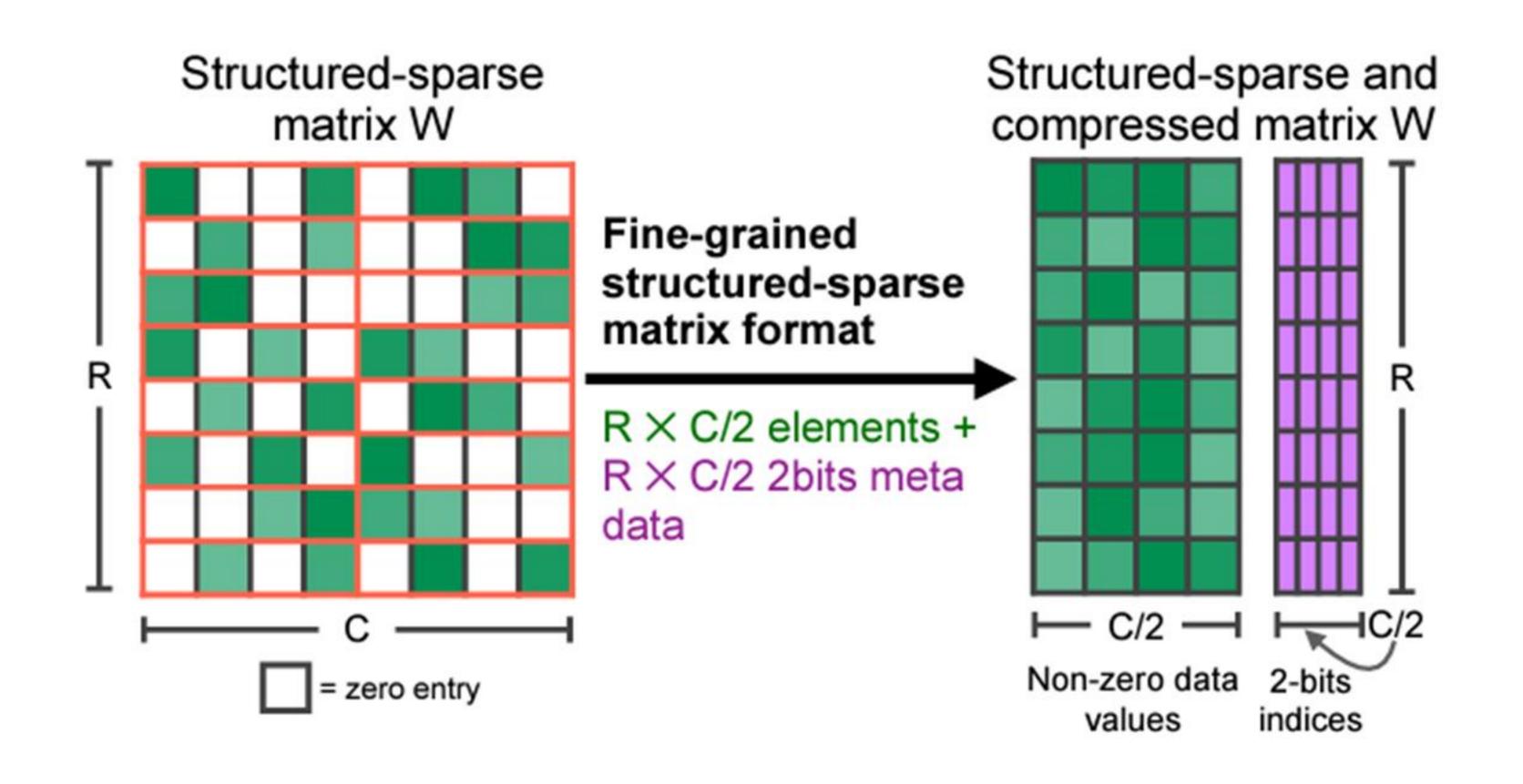
Comparing Modern Parallel Hardware

	Multi-core CPU	GPU	FPGA	ASICs (e.g., TPUs)
Peak FLOPS	Moderate	High	High	Very High
Power Consumption	High	Very High	Very Low	Low-Very Low
Cost	Low	High	Very High	Highest
Generality / Flexibility	Highest	Medium	Very High	Lowest
Fitness for DL Training?	Poor Fit	Best Fit	Poor Fit	Potential exists but not mass market
Fitness for DL Inference?	Moderate	Moderate	Good Fit	Best Fit
Cloud Vendor Support	All	All	All	GCP

Case Study 1: Nvidia GPU Specification

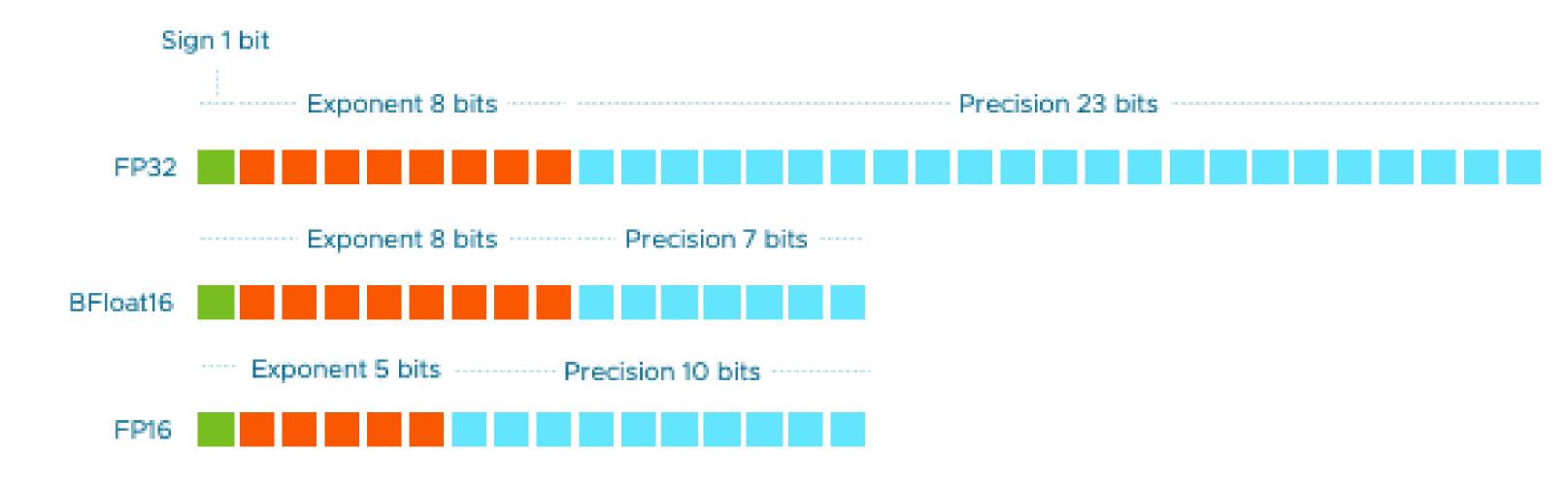
67 teraFLOPS 989 teraFLOPS 1,979 teraFLOPS 1,979 teraFLOPS 3,958 teraFLOPS 3,958 TOPS 80GB 3.35TB/s
1,979 teraFLOPS 1,979 teraFLOPS 3,958 teraFLOPS 3,958 TOPS 80GB
1,979 teraFLOPS 3,958 teraFLOPS 3,958 TOPS 80GB
3,958 teraFLOPS 3,958 TOPS 80GB
3,958 TOPS 80GB
80GB
3.35TB/s
7 NVDEC 7 JPEG
Up to 700W (configurable)
Up to 7 MIGS @ 10GB each
SXM
NVIDIA NVLink™: 900GB/s PCIe Gen5: 128GB/s
NVIDIA HGX H100 Partner and NVIDIA- Certified Systems [™] with 4 or 8 GPUs NVIDIA DGX H100 with 8 GPUs
Add-on

Case Study 1: Nvidia GPU Specification



Case Study 1: Nvidia GPU Specification

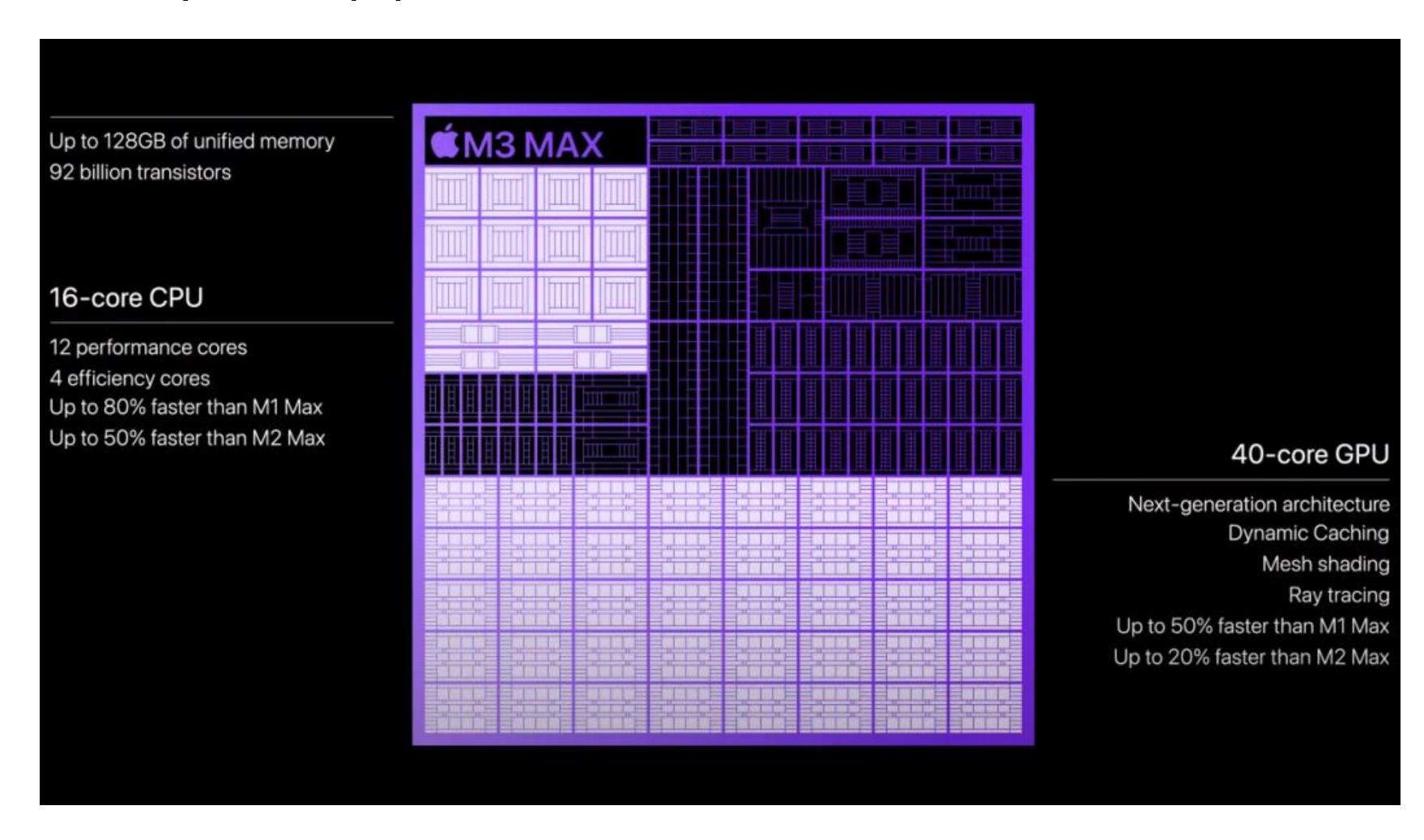
	67 teraFLOPS		
FP32	67 teraFLOPS		
TF32 Tensor Core*	989 teraFLOPS		
BFLOAT16 Tensor Core*	1,979 teraFLOPS		
FP16 Tensor Core [*]	1,979 teraFLOPS		
FP8 Tensor Core*	3,958 teraFLOPS		
INT8 Tensor Core [*]	3,958 TOPS		
GPU Memory	80GB		
GPU Memory Bandwidth	3.35TB/s		
Decoders	7 NVDEC 7 JPEG		
Max Thermal Design Power (TDP)	Up to 700W (configurable)		
Multi-Instance GPUs	Up to 7 MIGS @ 10GB each		
Form Factor	SXM		
Interconnect	NVIDIA NVLink™: 900GB/s PCle Gen5: 128GB/s		
Server Options	NVIDIA HGX H100 Partner and NVIDIA- Certified Systems [™] with 4 or 8 GPUs NVIDIA DGX H100 with 8 GPUs		



Question: why this could work in ML programs?

Case Study 2: Apple Silicon

Case Study 2: Apple Silicon Revealed



Specialized Hardware for DS/ML is a really good business

Reuters

Nvidia outstrips Alphabet as third largest US company by market value

1 hour ago

Case Study 3: Leading Chip Startups

Summary

- Dataflow Graph
- Two major parallelisms:
 - Task parallelism -> partitioning the dataflow graph
 - Data parallel -> partitioning the data
- Data parallelism is ubiquitous, built in modern chips and everywhere.

Take-home Exercise

- Study B100 specification and compare it to H100
 - How nvidia claims another 2x from H100 -> B100?
- Study Apple M5 and compare it to M3