
DSC 204A: Scalable Data Systems

Fall 2025

1

https://hao-ai-lab.github.io/dsc204a-f25/

Staff
Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

@haozhangml

haozhang@ucsd.edu

@haoailab

https://twitter.com/haozhangml

Where We Are

Cloud

Networking

Collective
communication

Datacenter
networking

Storage

(Distributed) File

Systems / Database

Cloud storage

Part3: Compute

Distributed
Computing

Motivations, Economics, Ecosystems,
Trends

Big data
processing

3

Parallelism

Key parallelism paradigms in data systems
• assuming there will be coordination:

Replicated

Partitioned

Shared Replicated Partitioned
data

Task parallelism

Data

parallelism

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps

also across machines/workers (aka “Divide and Conquer”)

func

Hybrid

parallelism

N/A (rare cases)

Terms are confusing

• Different domains term them differently in different contexts

• Architecture/parallel computing: single-node multi-cores

• SIMD, MIMD, SIMT

• Distributed system: multiple-node multi-cores

• SPMD vs. MPMD

• Machine learning community

• Data parallelism vs. Model parallelism

• Inter-operator parallelism vs. Intra-operator parallelism

5

Today’s topic: Parallelism

• Express data processing in abstraction

• Parallelisms

• Task parallelism

• Data parallelism

• Terms: SIMD, SIMT, SPMD, MPMD

6

Task Parallelism

Basic Idea: Split up tasks across workers; if there is a common

dataset that they read, just make copies of it (aka replication)

T1

D

T2 T3

T4 T5

T6

Example:

2) Put T1 on worker 1 (W1), T2 on W2,
T3 on W3; run all 3 in parallel

1) Copy whole D to all workers

Given 3
workers

3) After T1 ends, run T4 on W1; after T2
ends, run T5 on W2; after T3 ends, W3 is idle

4) After T4 & T5 end, run T6 on W1; W2 is
idle

7

Task Parallelism

• Topological sort of tasks in task graph for scheduling

• Notion of a “worker” can be at processor/core level, not just at

node/server level

• Thread-level parallelism possible instead of process-level

• E.g., Ray: 4 worker nodes x 4 cores = 16 workers total

• Main pros of task parallelism:

• Simple to understand

• Independence of workers => low software complexity

• Main cons of task parallelism:

• Can be difficult to implement

• Idle times possible on workers

Task Parallelism

8

Degree of Parallelism

• The largest amount of concurrency possible in the task
graph, i.e., how many task can be run simultaneously

T1

D

T2 T3

T4 T5

T6

Example:

Given 3
workers

Degree of parallelism is only 3

So, more than 3 workers is not

useful for this workload!

Q: How do we quantify the runtime

performance benefits of task
parallelism?

But over time, degree of

parallelism keeps dropping in this
example

9

Quantifying Benefit of Parallelism: Speedup

Speedup =
Completion time given only 1 worker

Completion time given n (>1) workers

Q: But given n workers, can we get a speedup of n?

It depends!

(On degree of parallelism, task dependency graph structure,

intermediate data sizes, etc.)

Q: what kind of graphs can give a speedup of n?

10

Weak and Strong Scaling

Number of workers

Runtime speedup (fixed data size)

1 4 8 12

1

4

8

12

Linear

Speedup

Sublinear

Speedup

Factor (# workers, data size)

Runtime speedup

1 4 8 12

1

0.5

2

Linear Scaleup

Sublinear

Scaleup

Speedup plot / Strong scaling Scaleup plot / Weak scaling

Discussion: Is superlinear speedup/scaleup possible?

Number of workers
1 4 8 12

1

4

8

12

Linear

Speedup

Sublinear

Speedup

Factor (# workers, data size)
1 4 8 12

1

0.5

2

Linear Scaleup

Sublinear

Scaleup

12

Some Clarifications on Terms

• These terms almost all refer to the above, but they are slightly different

• Speedup, acceleration -> strong scaling

• Scaling, scale-up -> weak scaling

• Scalability -> both

• “system A is very scalable”

• When you add 1 more workers, the speedup increase by ~1

• “system A is more scalable than system B”

• When you add 1 more worker, the speedup of system A is larger than that

of system B

Speedup =
Completion time given only 1 worker

Completion time given n (>1) workers

13

Idle Times in Task Parallelism

Due to varying task completion times and varying degrees of

parallelism in workload, idle workers waste resources

T1

D

T2 T3

T4 T5

T6

Example:

Given 3

workers

Gantt Chart visualization of

schedule:

15
5

10

20
5

10
W1: T1 T1 T4 T6 T6

W2: T2 T5 T5 T5 T5

W3: T3 T3 T3

0 5 10 15 20 25 30 35

Idle times, or
“bubbles”

14

Idle Times in Task Parallelism

Due to varying task completion times and varying degrees of

parallelism in workload, idle workers waste resources

T1

D

T2 T3

T4 T5

T6

Example:

Given 3

workers

15
5

10

20
5

10

• In general, overall workload’s

completion time on task-parallel

setup is always lower bounded by

the longest path in the task graph

• Possibility: A task-parallel scheduler

can “release” a worker if it knows

that will be idle till the end

• Can saves costs in cloud

15

Calculating Task Parallelism Speedup

Due to varying task completion times and varying degrees of

parallelism in workload, idle workers waste resources

T1

D

T2 T3

T4 T5

T6

Example:

Given 3
workers

15
5

10

20
5

10

Speedup = 65/35 = 1.9x

Completion time

with 1 worker

10+5+15+5+

20+10 = 65

Parallel completion time 35

Ideal/linear speedup is 3x

Q: Why is it only 1.9x?

16

Today’s topic: Parallelism

• Express data processing in abstraction

• Parallelisms

• Task parallelism

• Data parallelism

• Parallel Processing Chips

Recall: Data parallelism in ML

Sync

Worker 1 Worker 2

Worker 3 Worker 4

Data

Data

Data

Data

18

Data parallelism: abstraction of SIMD/SIMT/SPMD
“Data Parallel” Multi-core Execution

Q: How to represent data parallelism in dataflow graph notions?

Given 3
workers

T1 T2 T3

T4 T5

T6

D

T1 T2 T3

T4 T5

T6

D1

T1 T2 T3

T4 T5

T6

D2

T1 T2 T3

T4 T5

T6

D3

19

Quantifying Efficiency of Data Parallelism

• As with task parallelism, we measure the speedup:

Speedup =
Completion time given only 1 core

Completion time given n (>1) core

20

Amdahl’s Law:

• Amdahl’s Law: Formula to upper bound possible speedup

• A program has 2 parts: one that benefits from multi-core

parallelism and one that does not

• Non-parallel part could be for control, memory stalls, etc.

Q: But given n cores, can we get a speedup of n?

It depends! (Just like it did with task parallelism)

Tno

Tyes

1 core:

Speedup =

n cores:

Tno

Tyes/n
Tyes + Tno

Tyes/n + Tno

=
n(1 + f)

n + f

Denote Tyes/Tno = f

21

Amdahl’s Law:

Speedup =

n(1 + f)

n + f

f = Tyes/Tno

Parallel portion =

 f / (1 + f)

22

Data parallelism is built in with today’s Processors

• Modern computers often have multiple processors and multiple cores

per processor, with a hierarchy of shared caches

23

Single-Instruction Multiple-Data

Example for SIMD in data science:

24

SIMD Generalizations

• Single-Instruction Multiple Thread (SIMT): Generalizes notion of SIMD to

different threads concurrently doing so

• Each thread may be assigned a core or a whole PU

• Single-Program Multiple Data (SPMD): A higher level of abstraction

generalizing SIMD operations or programs

• Under the hood, may use multiple processes or threads

• Each chunk of data processed by one core/PU

• Applicable to any CPU, not just vectorized PUs

• Most common form of parallel data processing at scale

The Problem of Chip Design

Control

Caches

ALU ALU

ALU ALU
Control

Caches

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

If we’re able to reduce to size
of ALU while keeping its power

26

• That’s why you see trends: 70nm -> 60nm -> 50nm -> … -> what is the best now?

• That’s why you see trends: 70nm ->

60nm -> 50nm -> … -> what is the best

now?

• Takeaway from hardware trends: it is

hard for general-purpose CPUs to

sustain FLOPs-heavy programs like

deep nets

• Motivated the rise of “accelerators”

for some classes of programs

Chip Industry: 70nm -> 60nm -> 50nm -> … ->?

• Problem: this is not substantiable; there are also power/heat issues

when you put more ALUs in a limited area (s.t. physics limitations)

Chip Industry: Moore’s Law Comes to an End

Option 1: Go to the

quantum world

Option 2: Specialized

hardware

Idea: How about we use a lot of weak/specialized cores

30

Hardware Accelerators: GPUs

• Graphics Processing Unit (GPU): Tailored for matrix/tensor ops

• Basic idea: Use tons of ALUs (but weak and more specialized); massive

data parallelism (SIMD on steroids); now H100 offers ~980 TFLOPS for

FP16!

• Popularized by NVIDIA in early 2000s for video games, graphics, and

multimedia; now ubiquitous in DL

• CUDA released in 2007; later wrapper APIs on top: CuDNN, CuSparse,

CuDF (RapidsAI), NCCL, etc.

31

Other Hardware Accelerators
Other Hardware Accelerators

• E.g.

• Tensor Processing Unit (TPU)

• An “application-specific integrated circuit” (ASIC) created by

Google in mid 2010s; used for AlphaGo

• E.g.

• B200 (projected release 2025): fp4 / fp8 Tensorcore

• E.g.

• M3 max: mixing tensorcore and normal core

What Does It Mean by “Specialized” In accelerator world

In General:

• Functionality-specialized:

• Can only compute certain computations: matmul, w/ sparsity

• Mixing specialized cores with versatile cores

• Reduce precision

• Floating point operations: fp32, fp16, fp8, int8, int4, …

• Tune the distribution of different components for specific

workloads

• SRAM, cache, registers, etc.

33

Comparing Modern Parallel Hardware

https://www.embedded.com/leveraging-fpgas-for-deep-learning/

Multi-core CPU GPU FPGA
ASICs

(e.g., TPUs)

Peak FLOPS

Power
Consumption

Cost

Generality /
Flexibility

Fitness for
DL Training?

Fitness for
DL Inference?

Cloud Vendor
Support

Moderate High High Very High

High Very High Very Low Low-Very Low

Low High Very High Highest

Highest Medium Very High Lowest

Poor Fit Best Fit Poor Fit
Potential exists but

not mass market

Moderate Moderate Good Fit Best Fit

All All All GCP

https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/
https://www.embedded.com/leveraging-fpgas-for-deep-learning/

Case Study 1: Nvidia GPU Specification

Case Study 1: Nvidia GPU Specification

Case Study 1: Nvidia GPU Specification

Question: why this could work in

ML programs?

Case Study 2: Apple Silicon

Case Study 2: Apple Silicon Revealed

Specialized Hardware for DS/ML is a really good business

Case Study 3: Leading Chip Startups

Summary

• Dataflow Graph

• Two major parallelisms:

• Task parallelism -> partitioning the dataflow graph

• Data parallel -> partitioning the data

• Data parallelism is ubiquitous, built in modern chips and

everywhere.

Take-home Exercise

• Study B100 specification and compare it to H100

• How nvidia claims another 2x from H100 -> B100?

• Study Apple M5 and compare it to M3

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Where We Are
	Slide 3: Parallelism
	Slide 4: Terms are confusing
	Slide 5: Today’s topic: Parallelism
	Slide 6: Task Parallelism
	Slide 7: Task Parallelism
	Slide 8: Degree of Parallelism
	Slide 9: Quantifying Benefit of Parallelism: Speedup
	Slide 10: Weak and Strong Scaling
	Slide 11: Discussion: Is superlinear speedup/scaleup possible?
	Slide 12: Some Clarifications on Terms
	Slide 13: Idle Times in Task Parallelism
	Slide 14: Idle Times in Task Parallelism
	Slide 15: Calculating Task Parallelism Speedup
	Slide 16: Today’s topic: Parallelism
	Slide 17: Recall: Data parallelism in ML
	Slide 18: Data parallelism: abstraction of SIMD/SIMT/SPMD
	Slide 19: Quantifying Efficiency of Data Parallelism
	Slide 20: Amdahl’s Law:
	Slide 21: Amdahl’s Law:
	Slide 22: Data parallelism is built in with today’s Processors
	Slide 23: Single-Instruction Multiple-Data
	Slide 24: SIMD Generalizations
	Slide 25: The Problem of Chip Design
	Slide 26
	Slide 27: Chip Industry: 70nm -> 60nm -> 50nm -> … ->?
	Slide 28: Chip Industry: Moore’s Law Comes to an End
	Slide 29: Idea: How about we use a lot of weak/specialized cores
	Slide 30: Hardware Accelerators: GPUs
	Slide 31: Other Hardware Accelerators
	Slide 32: What Does It Mean by “Specialized” In accelerator world
	Slide 33: Comparing Modern Parallel Hardware
	Slide 34: Case Study 1: Nvidia GPU Specification
	Slide 35: Case Study 1: Nvidia GPU Specification
	Slide 36: Case Study 1: Nvidia GPU Specification
	Slide 37: Case Study 2: Apple Silicon
	Slide 38: Case Study 2: Apple Silicon Revealed
	Slide 39: Specialized Hardware for DS/ML is a really good business
	Slide 40: Case Study 3: Leading Chip Startups
	Slide 41: Summary
	Slide 42: Take-home Exercise

